Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Plants ; 9(10): 1618-1626, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37666963

RESUMO

The plant kingdom exhibits diverse bodyplans, from single-celled algae to complex multicellular land plants, but it is unclear how this phenotypic disparity was achieved. Here we show that the living divisions comprise discrete clusters within morphospace, separated largely by reproductive innovations, the extinction of evolutionary intermediates and lineage-specific evolution. Phenotypic complexity correlates not with disparity but with ploidy history, reflecting the role of genome duplication in plant macroevolution. Overall, the plant kingdom exhibits a pattern of episodically increasing disparity throughout its evolutionary history that mirrors the evolutionary floras and reflects ecological expansion facilitated by reproductive innovations. This pattern also parallels that seen in the animal and fungal kingdoms, suggesting a general pattern for the evolution of multicellular bodyplans.


Assuntos
Evolução Biológica , Plantas , Animais , Plantas/genética
2.
Geobiology ; 21(4): 454-473, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36779552

RESUMO

The evolution of the first plant-based terrestrial ecosystems in the early Palaeozoic had a profound effect on the development of soils, the architecture of sedimentary systems, and shifts in global biogeochemical cycles. In part, this was due to the evolution of complex below-ground (root-like) anchorage systems in plants, which expanded and promoted plant-mineral interactions, weathering, and resulting surface sediment stabilisation. However, little is understood about how these micro-scale processes occurred, because of a lack of in situ plant fossils in sedimentary rocks/palaeosols that exhibit these interactions. Some modern plants (e.g., liverworts, mosses, lycophytes) share key features with the earliest land plants; these include uni- or multicellular rhizoid-like anchorage systems or simple roots, and the ability to develop below-ground networks through prostrate axes, and intimate associations with fungi, making them suitable analogues. Here, we investigated cryptogamic ground covers in Iceland and New Zealand to better understand these interactions, and how they initiate the sediment stabilisation process. We employed multi-dimensional and multi-scale imaging, including scanning electron microscopy (SEM) and X-ray Computed Tomography (µCT) of non-vascular liverworts (Haplomitriopsida and complex thalloids) and mosses, with additional imaging of vascular lycopods. We find that plants interact with their substrate in multiple ways, including: (1) through the development of extensive surface coverings as mats; (2) entrapment of sediment grains within and between networks of rhizoids; (3) grain entwining and adherence by rhizoids, through mucilage secretions, biofilm-like envelopment of thalli on surface grains; and (4) through grain entrapment within upright 'leafy' structures. Significantly, µCT imaging allows us to ascertain that rhizoids are the main method for entrapment and stabilisation of soil grains in the thalloid liverworts. This information provides us with details of how the earliest land plants may have significantly influenced early Palaeozoic sedimentary system architectures, promoted in situ weathering and proto-soil development, and how these interactions diversified over time with the evolution of new plant organ systems. Further, this study highlights the importance of cryptogamic organisms in the early stages of sediment stabilisation and soil formation today.


Assuntos
Ecossistema , Embriófitas , Plantas , Fungos , Fósseis , Filogenia
3.
New Phytol ; 238(1): 70-79, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739554

RESUMO

Most plants form mycorrhizal associations with mutualistic soil fungi. Through these partnerships, resources are exchanged including photosynthetically fixed carbon for fungal-acquired nutrients. Recently, it was shown that the diversity of associated fungi is greater than previously assumed, extending to Mucoromycotina fungi. These Mucoromycotina 'fine root endophytes' (MFRE) are widespread and generally co-colonise plant roots together with Glomeromycotina 'coarse' arbuscular mycorrhizal fungi (AMF). Until now, this co-occurrence has hindered the determination of the direct function of MFRE symbiosis. To overcome this major barrier, we developed new techniques for fungal isolation and culture and established the first monoxenic in vitro cultures of MFRE colonising a flowering plant, clover. Using radio- and stable-isotope tracers in these in vitro systems, we measured the transfer of 33 P, 15 N and 14 C between MFRE hyphae and the host plant. Our results provide the first unequivocal evidence that MFRE fungi are nutritional mutualists with a flowering plant by showing that clover gained both 15 N and 33 P tracers directly from fungus in exchange for plant-fixed C in the absence of other micro-organisms. Our findings and methods pave the way for a new era in mycorrhizal research, firmly establishing MFRE as both mycorrhizal and functionally important in terrestrial ecosystems.


Assuntos
Magnoliopsida , Micorrizas , Endófitos , Ecossistema , Carbono , Fósforo , Nitrogênio , Fungos , Simbiose , Plantas/microbiologia , Raízes de Plantas/microbiologia
4.
Physiol Plant ; 174(3): e13715, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35560043

RESUMO

Mycorrhizal associations between fungi and plant roots have globally significant impacts on nutrient cycling. Mucoromycotina 'fine root endophytes' (MFRE) are a distinct and recently characterised group of mycorrhiza-forming fungi that associate with the roots of a range of host plant species. Given their previous misidentification and assignment as arbuscular mycorrhizal fungi (AMF) of the Glomeromycotina, it is now important to untangle the specific form and function of MFRE symbioses. In particular, relatively little is known about the nature of MFRE colonisation and its role in N uptake and transfer to host plants. Even less is known about the mechanisms by which MFRE access and assimilate N, and how this N is processed and subsequently exchanged with host plants for photosynthates. Here, we summarise and contrast the structures formed by MFRE and arbuscular mycorrhizal fungi in host plants as well as compare the N source preference of each mycorrhizal fungal group with what is currently known for MFRE N uptake. We compare the mechanisms of N assimilation and transfer to host plants utilised by the main groups of mycorrhizal fungi and hypothesise potential mechanisms for MFRE N assimilation and transfer, outlining directions for future research.


Assuntos
Glomeromycota , Micorrizas , Endófitos , Nitrogênio , Raízes de Plantas/microbiologia , Plantas/microbiologia , Simbiose
5.
New Phytol ; 233(3): 1440-1455, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34806774

RESUMO

The earliest evidence for land plants comes from dispersed cryptospores from the Ordovician, which dominated assemblages for 60 million years. Direct evidence of their parent plants comes from minute fossils in Welsh Borderland Upper Silurian to Lower Devonian rocks. We recognize a group that had forking, striated axes with rare stomata terminating in valvate sporangia containing permanent cryptospores, but their anatomy was unknown especially regarding conducting tissues. Charcoalified fossils extracted from the rock using HF were selected from macerates and observed using scanning electron microscopy. Promising examples were split for further examination and compared with electron micrographs of the anatomy of extant bryophytes. Fertile fossil axes possess central elongate cells with thick walls bearing globules, occasional strands and plasmodesmata-sized pores. The anatomy of these cells best matches desiccation-tolerant food-conducting cells (leptoids) of bryophytes. Together with thick-walled epidermal cells and extremely small size, these features suggest that these plants were poikilohydric. Our new data on conducting cells confirms a combination of characters that distinguish the permanent cryptospore-producers from bryophytes and tracheophytes. We therefore propose the erection of a new group, here named the Eophytidae (eophytes).


Assuntos
Evolução Biológica , Embriófitas , Fósseis , Microscopia Eletrônica de Varredura , Plantas/anatomia & histologia
6.
New Phytol ; 233(3): 1456-1465, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34806776

RESUMO

Key sources of information on the nature of early terrestrial ecosystems are the fossilized remains of plants and associated organic encrustations, which are interpreted as either biofilms, biological soil crusts or lichens. The hypothesis that some of these encrustations might be the remains of the thalloid gametophytes of embryophytes provided the stimulus for this investigation. Fossils preserved in charcoal were extracted from Devonian Period (Lochkovian Stage, c. 410-419 Myr old) sediments at a geological site in Shropshire (UK). Scanning electron micrographs (SEMs) of the fossils were compared with new and published SEMs of extant bryophytes and tracheophytes, respectively. One specimen was further prepared and imaged by transmission electron microscopy. Fossils of thalloid morphology were composed almost entirely of cells with labyrinthine ingrowths; these also were present in fossils of axial morphology where they were associated with putative food-conducting cells. Comparison with modern embryophytes demonstrates that these distinctive cells are transfer cells (TCs). Our fossils provide by far the earliest geological evidence of TCs. They also show that some organic encrustations are the remains of thalloid land plants and that these are possibly part of the life cycle of a newly recognized group of plants called the eophytes.


Assuntos
Evolução Biológica , Embriófitas , Ecossistema , Fósseis , Plantas
7.
New Phytol ; 231(6): 2399, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34337752
9.
Mycorrhiza ; 31(4): 431-440, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33884466

RESUMO

Non-vascular plants associating with arbuscular mycorrhizal (AMF) and Mucoromycotina 'fine root endophyte' (MFRE) fungi derive greater benefits from their fungal associates under higher atmospheric [CO2] (a[CO2]) than ambient; however, nothing is known about how changes in a[CO2] affect MFRE function in vascular plants. We measured movement of phosphorus (P), nitrogen (N) and carbon (C) between the lycophyte Lycopodiella inundata and Mucoromycotina fine root endophyte fungi using 33P-orthophosphate, 15 N-ammonium chloride and 14CO2 isotope tracers under ambient and elevated a[CO2] concentrations of 440 and 800 ppm, respectively. Transfers of 33P and 15 N from MFRE to plants were unaffected by changes in a[CO2]. There was a slight increase in C transfer from plants to MFRE under elevated a[CO2]. Our results demonstrate that the exchange of C-for-nutrients between a vascular plant and Mucoromycotina FRE is largely unaffected by changes in a[CO2]. Unravelling the role of MFRE in host plant nutrition and potential C-for-N trade changes between symbionts under different abiotic conditions is imperative to further our understanding of the past, present and future roles of plant-fungal symbioses in ecosystems.


Assuntos
Endófitos , Micorrizas , Carbono , Dióxido de Carbono , Ecossistema , Nutrientes , Raízes de Plantas
11.
Geobiology ; 19(3): 292-306, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33569915

RESUMO

Modern cryptogamic ground covers (CGCs), comprising assemblages of bryophytes (hornworts, liverworts, mosses), fungi, bacteria, lichens and algae, are thought to resemble early divergent terrestrial communities. However, limited in situ plant and other fossils in the rock record, and a lack of CGC-like soils reported in the pre-Silurian sedimentological record, have hindered understanding of the structure, composition and interactions within the earliest CGCs. A key question is how the earliest CGC-like organisms drove weathering on primordial terrestrial surfaces (regolith), leading to the early stages of soil development as proto-soils, and subsequently contributing to large-scale biogeochemical shifts in the Earth System. Here, we employed a novel qualitative, quantitative and multi-dimensional imaging approach through X-ray micro-computed tomography, scanning electron, and optical microscopy to investigate whether different combinations of modern CGC organisms from primordial-like settings in Iceland develop organism-specific soil forming features at the macro- and micro-scales. Additionally, we analysed CGCs growing on hard rocky substrates to investigate the initiation of weathering processes non-destructively in 3D. We show that thalloid CGC organisms (liverworts, hornworts) develop thin organic layers at the surface (<1 cm) with limited subsurface structural development, whereas leafy mosses and communities of mixed organisms form profiles that are thicker (up to ~ 7 cm), structurally more complex, and more organic-rich. We term these thin layers and profiles proto-soils. Component analyses from X-ray micro-computed tomography data show that thickness and structure of these proto-soils are determined by the type of colonising organism(s), suggesting that the evolution of more complex soils through the Palaeozoic may have been driven by a shift in body plan of CGC-like organisms from flattened and appressed to upright and leafy. Our results provide a framework for identifying CGC-like proto-soils in the rock record and a new proxy for understanding organism-soil interactions in ancient terrestrial biospheres and their contribution to the early stages of soil formation.


Assuntos
Ecossistema , Solo , Islândia , Microbiologia do Solo , Microtomografia por Raio-X
12.
New Phytol ; 230(5): 1815-1828, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33458818

RESUMO

Stomata exert control on fluxes of CO2 and water (H2 O) in the majority of vascular plants and thus are pivotal for planetary fluxes of carbon and H2 O. However, in mosses, the significance and possible function of the sporophytic stomata are not well understood, hindering understanding of the ancestral function and evolution of these key structures of land plants. Infrared gas analysis and 13 CO2 labelling, with supporting data from gravimetry and optical and scanning electron microscopy, were used to measure CO2 assimilation and water exchange on young, green, ± fully expanded capsules of 11 moss species with a range of stomatal numbers, distributions, and aperture sizes. Moss sporophytes are effectively homoiohydric. In line with their open fixed apertures, moss stomata, contrary to those in tracheophytes, do not respond to light and CO2 concentration. Whereas the sporophyte cuticle is highly impermeable to gases, stomata are the predominant sites of 13 CO2 entry and H2 O loss in moss sporophytes, and CO2 assimilation is closely linked to total stomatal surface areas. Higher photosynthetic autonomy of moss sporophytes, consequent on the presence of numerous stomata, may have been the key to our understanding of evolution of large, gametophyte-independent sporophytes at the onset of plant terrestrialization.


Assuntos
Briófitas , Estômatos de Plantas , Carbono , Dióxido de Carbono , Células Germinativas Vegetais
14.
Nat Plants ; 6(3): 184-185, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32170281
15.
Mycorrhiza ; 30(1): 23-49, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32130512

RESUMO

An accurate understanding of the diversity and distribution of fungal symbioses in land plants is essential for mycorrhizal research. Here we update the seminal work of Wang and Qiu (Mycorrhiza 16:299-363, 2006) with a long-overdue focus on early-diverging land plant lineages, which were considerably under-represented in their survey, by examining the published literature to compile data on the status of fungal symbioses in liverworts, hornworts and lycophytes. Our survey combines data from 84 publications, including recent, post-2006, reports of Mucoromycotina associations in these lineages, to produce a list of at least 591 species with known fungal symbiosis status, 180 of which were included in Wang and Qiu (Mycorrhiza 16:299-363, 2006). Using this up-to-date compilation, we estimate that fewer than 30% of liverwort species engage in symbiosis with fungi belonging to all three mycorrhizal phyla, Mucoromycota, Basidiomycota and Ascomycota, with the last being the most widespread (17%). Fungal symbioses in hornworts (78%) and lycophytes (up to 100%) appear to be more common but involve only members of the two Mucoromycota subphyla Mucoromycotina and Glomeromycotina, with Glomeromycotina prevailing in both plant groups. Our fungal symbiosis occurrence estimates are considerably more conservative than those published previously, but they too may represent overestimates due to currently unavoidable assumptions.


Assuntos
Embriófitas , Glomeromycota , Micorrizas , Fungos , Filogenia , Simbiose
16.
Cladistics ; 36(2): 184-193, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34618956

RESUMO

As one of the four main lineages diverging from the early diversification of land plants, the phylogeny of liverworts holds the information about nearly 500 Myr of independent adaptation to changing environments. Thus, resolving the phylogenetic history of liverworts will provide unique insights into the successful diversification of early land plants in terrestrial ecosystems. However, the deep diverging events of this group remain incompletely resolved, such as the definite position of Ptilidiales. Here, we aimed to reconstruct the backbone relationships of liverworts using 84 protein-coding chloroplast genes, a dataset comprising 35 representatives from all major lineages of liverworts, and three phylogenetic analyses, namely maximum parsimony, maximum likelihood and Bayesian inference. To test the impact of composition biases, the phylogenetic analyses were carried out using three alignments representing the same dataset either as: (i) nucleotides, (ii) amino acids, or (iii) recoded nucleotides applying ambiguity base code. Chloroplast genome data consistently supported the monophyletic origin of three major lineages in liverworts, as well as the majority of backbone relationships. Ptilidiales were found to be sister to Jungermanniales. The rapid accumulation of G/C tracks as a consequence of increased GC content is an important cause for the long branches inferred in this group. Our study not only provides empirical evidence to support the significance of plastid genome sequencing to reconstruct the phylogeny of this important plant lineage, but also suggests that the GC content has played a critical role in the evolutionary dynamics of plastid genomes in land plants.

17.
Mycorrhiza ; 29(6): 551-565, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31720838

RESUMO

Like the majority of land plants, liverworts regularly form intimate symbioses with arbuscular mycorrhizal fungi (Glomeromycotina). Recent phylogenetic and physiological studies report that they also form intimate symbioses with Mucoromycotina fungi and that some of these, like those involving Glomeromycotina, represent nutritional mutualisms. To compare these symbioses, we carried out a global analysis of Mucoromycotina fungi in liverworts and other plants using species delimitation, ancestral reconstruction, and network analyses. We found that Mucoromycotina are more common and diverse symbionts of liverworts than previously thought, globally distributed, ancestral, and often co-occur with Glomeromycotina within plants. However, our results also suggest that the associations formed by Mucoromycotina fungi are fundamentally different because, unlike Glomeromycotina, they may have evolved multiple times and their symbiotic networks are un-nested (i.e., not forming nested subsets of species). We infer that the global Mucoromycotina symbiosis is evolutionarily and ecologically distinctive.


Assuntos
Glomeromycota , Hepatófitas , Micorrizas , Fungos , Filogenia , Simbiose
18.
Plant Physiol ; 181(2): 565-577, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31358684

RESUMO

Fungi and plants have engaged in intimate symbioses that are globally widespread and have driven terrestrial biogeochemical processes since plant terrestrialization >500 million years ago. Recently, hitherto unknown nutritional mutualisms involving ancient lineages of fungi and nonvascular plants have been discovered, although their extent and functional significance in vascular plants remain uncertain. Here, we provide evidence of carbon-for-nitrogen exchange between an early-diverging vascular plant (Lycopodiella inundata) and Mucoromycotina (Endogonales) fine root endophyte fungi. Furthermore, we demonstrate that the same fungal symbionts colonize neighboring nonvascular and flowering plants. These findings fundamentally change our understanding of the physiology, interrelationships, and ecology of underground plant-fungal symbioses in modern terrestrial ecosystems by revealing the nutritional role of Mucoromycotina fungal symbionts in vascular plants.


Assuntos
Endófitos/fisiologia , Lycopodiaceae/microbiologia , Endófitos/ultraestrutura , Isótopos , Raízes de Plantas/microbiologia , Simbiose
19.
New Phytol ; 223(2): 908-921, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30919981

RESUMO

Liverworts, which are amongst the earliest divergent plant lineages and important ecosystem pioneers, often form nutritional mutualisms with arbuscular mycorrhiza-forming Glomeromycotina and fine-root endophytic Mucoromycotina fungi, both of which coevolved with early land plants. Some liverworts, in common with many later divergent plants, harbour both fungal groups, suggesting these fungi may complementarily improve plant access to different soil nutrients. We tested this hypothesis by growing liverworts in single and dual fungal partnerships under a modern atmosphere and under 1500 ppm [CO2 ], as experienced by early land plants. Access to soil nutrients via fungal partners was investigated with 15 N-labelled algal necromass and 33 P orthophosphate. Photosynthate allocation to fungi was traced using 14 CO2 . Only Mucoromycotina fungal partners provided liverworts with substantial access to algal 15 N, irrespective of atmospheric CO2 concentration. Both symbionts increased 33 P uptake, but Glomeromycotina were often more effective. Dual partnerships showed complementarity of nutrient pool use and greatest photosynthate allocation to symbiotic fungi. We show there are important functional differences between the plant-fungal symbioses tested, providing new insights into the functional biology of Glomeromycotina and Mucoromycotina fungal groups that form symbioses with plants. This may explain the persistence of the two fungal lineages in symbioses across the evolution of land plants.


Assuntos
Carbono/metabolismo , Glomeromycota/fisiologia , Hepatófitas/microbiologia , Mucor/fisiologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/microbiologia , Simbiose , Biomassa , Endófitos/ultraestrutura , Glomeromycota/ultraestrutura , Modelos Lineares , Mucor/ultraestrutura , Micélio/metabolismo
20.
Proc Biol Sci ; 285(1888)2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305437

RESUMO

Arbuscular mycorrhizas are widespread in land plants including liverworts, some of the closest living relatives of the first plants to colonize land 500 million years ago (MYA). Previous investigations reported near-exclusive colonization of liverworts by the most recently evolved arbuscular mycorrhizal fungi, the Glomeraceae, indicating a recent acquisition from flowering plants at odds with the widely held notion that arbuscular mycorrhizal-like associations in liverworts represent the ancestral symbiotic condition in land plants. We performed an analysis of symbiotic fungi in 674 globally collected liverworts using molecular phylogenetics and electron microscopy. Here, we show every order of arbuscular mycorrhizal fungi colonizes early-diverging liverworts, with non-Glomeraceae being at least 10 times more common than in flowering plants. Arbuscular mycorrhizal fungi in liverworts and other ancient plant lineages (hornworts, lycopods, and ferns) were delimited into 58 taxa and 36 singletons, of which at least 43 are novel and specific to liverworts. The discovery that early plant lineages are colonized by early-diverging fungi supports the hypothesis that arbuscular mycorrhizas are an ancestral symbiosis for all land plants.


Assuntos
Evolução Biológica , Glomeromycota/fisiologia , Hepatófitas/microbiologia , Micorrizas/fisiologia , Simbiose , Microscopia Crioeletrônica , Glomeromycota/ultraestrutura , Hepatófitas/ultraestrutura , Microscopia Eletrônica de Varredura , Micorrizas/ultraestrutura , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...